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Introduction



An origin story

Theorem (Dirac, 1952)

If an n-vertex graph G has

minimum degree δ(G ) ≥ 1
2
n,

then G is Hamiltonian.

Moreover, this bound is best

possible.

Theorem (Pósa, 1962)

The random graph G (n, p) is
Hamiltonian with probability

tending to

0 if it has o (n ln n) edges.

1 if it has ω (n ln n) edges.

Theorem (Bohman�Frieze�Martin, 2003)

If δ(G ) = Ω(n), then adding Θ(n) random edges makes G
Hamiltonian with high probability.
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Schur's Theorem

Schur triples

A Schur triple in A ⊆ N is a triple x , y , z ∈ A with x + y = z .

Theorem (Schur, 1916)

For every r ≥ 1, there is an

n = n(r) ∈ N such that every

r -colouring of [n] has a monochromatic

Schur triple.

A Ramsey property

We say a set A ⊆ N is -Schur if every r -colouring of A has a

monochromatic Schur triple.
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Extremal Schur: sum-free sets

Question
How large can a subset A ⊆ [n] be without being r -Schur?

r = 1

Ques: What are the largest sum-free subsets of [n]?

Ans: Largest sets have size n
2

Aodd = {x ∈ [n] : x ≡ 1 (mod 2)}

Alarge =
{
x ∈ [n] : x > n

2

}
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Extremal Schur: more colours

Question
How large can a subset A ⊆ [n] be without being r -Schur?

Theorem (Hu, 1980)

If A ⊆ [n] with |A| > 4n
5
, then A is 2-Schur.

Bound is tight

A = {x ∈ [n] : x ≡ 1, 4 (mod 5)} ∪ {x ∈ [n] : x ≡ 2, 3 (mod 5)}

Even more colours
Problem is open for r ≥ 3

- Conjecture from Abbott and Wang (1977)
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Probabilistic Schur: sum-free sets

De�nition (Binomial random integer subsets)

Given p ∈ [0, 1], choose each element of [n] to be in [n]p
independently with probability p.

Question
At what density p is [n]p ⊆ [n] typically r -Schur?

Proposition (r = 1)

(0) If p = o(n−2/3), then w.h.p. [n]p is sum-free.

(1) If p = ω(n−2/3), then w.h.p. [n]p is not sum-free.
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Perturbed Schur

Shaken, not Schurred
Given A ⊆ [n], for which p will A ∪ [n]p be

2-Schur w.h.p.?

Observation

- (Extremal Schur) If |A| > 4
5
n, we can take p = 0

- (Probabilistic Schur) If |A| = 0, we need p = Ω
(
n−1/2

)
Theorem (Aigner-Horev�Person, 2019)

If |A| = Ω(n) and p = ω
(
n−2/3

)
, then A ∪ [n]p is 2-Schur w.h.p.

Observation
Result is best possible for |A| ≤ n

2
: take A sum-free, and A ∪ [n]p
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A pictorial summary



Our results



Denser sets

We complete the picture for sets |A| > n
2

Theorem (D.�Knierim�Morris, 2022+)

For n, t ∈ N with n
2
+ t ≤ 4n

5
, de�ne p(n, t) = min

{
n−2/3, t−1

}
.

(0) ∃ A ⊂ [n], |A| = n
2
+ t, such that if p = o (p(n, t)), then

A ∪ [n]p is w.h.p. not 2-Schur.

(1) ∀ A ⊂ [n], |A| = n
2
+ t, and p = ω (p(n, t)),

A ∪ [n]p is w.h.p. 2-Schur.

Observation
We need t = ω

(
n2/3

)
before we save any further randomness.
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Perturbed stability

Theorem (D.�Knierim�Morris, 2022+)

If A ⊂ [n] with |A| = n
2
+ t, and q = ω

(
n−1

)
is such that A ∪ [n]q

is w.h.p. not 2-Schur, then either
∣∣Alarge \ A

∣∣ = O(q−1) or
|Aodd \ A| = O

(
q−2n−1

)
.

Remark

- If A is not close to an extremal sum-free set, then very little

randomness is needed

- A must contain at least t even numbers

⇒ �rst case cannot occur if q = ω
(
(nt)−1/2

)
▶ when n1/3 ≪ t ≪ n, we have (nt)−1/2 ≪ min

{
n−2/3, t−1

}
⇒ Alarge �more sum-free� than Aodd
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An updated picture



The sparse range

Question
What happens when our initial set is sparse, |A| = o(n)?

Observation
No gain if |A| = o

(
n1/2

)
:

Let d = |A|
n and take A ∼ [n]d

⇒ A ∪ [n]p ∼ [n]q for q ≈ d + p

⇒ not 2-Schur unless p = Ω
(
n−1/2

)
Question
What happens when our initial set is moderately sparse,

Ω
(
n1/2

)
= |A| = o(n)?
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Sparse results

Theorem (D.�Knierim�Morris, 2022+)

Let n, s ∈ N satisfy Ω
(
n1/2

)
= s ≤ n

2
.

(0) ∃ A ⊂ [n], |A| = s, such that if p = o
(
(ns)−1/3

)
, then

A ∪ [n]p is w.h.p. not 2-Schur.

(1) ∀ A ⊂ [n], |A| = s, and p = ω̃
(
(n13s)−1/27

)
, A∪ [n]p is w.h.p.

2-Schur.

Remark

- Lower bound interpolates between n−1/2 and n−2/3

- Upper bound is o
(
n−1/2

)
when s = ω̃

(
n1/2

)
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Proof sketches



Lower bound

Theorem (D.�Knierim�Morris, 2022+)

(0) ∃ A ⊂ [n], |A| = s, such that if p = o
(
(ns)−1/3

)
, then

A ∪ [n]p is w.h.p. not 2-Schur.

Proof idea

- Take A = [n − s + 1, n], coloured green

- Algorithmic recolouring of random elements

(à la random Ramsey lower bounds)
▶ if no good colouring exists ⇒ cycle of Schur triples
▶ Such a cycle unlikely to exist in random elements
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Upper bound

Theorem (D.�Knierim�Morris, 2022+)

(1) ∀ A ⊂ [n], |A| = s, and p = ω̃
(
(n13s)−1/27

)
, A∪ [n]p is w.h.p.

2-Schur.

Proof idea

- Show the random set [n]p is incompatible with any colouring

- Problem: too many colourings for a union bound

- Solution: build a hypergraph
▶ vertices ↔ coloured elements
▶ edges ↔ small con�gurations forcing mc Schur triples

⇒ mc-Schur-triple-free colourings → independent sets

- Hypergraph containers: can group together similar colourings
▶ apply union bound more e�ciently
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The colouring hypergraph � vertices

De�nition (Colouring hypergraph)

Given A ⊆ [n], |A| = s, the colouring hypergraph HA has vertices

V (HA) = VR ∪ VG , which are two disjoint copies of [n].

Modelling colourings

Given any S ⊆ [n], map colourings φ : S → {red, green} to

{i ∈ VR : i ∈ S , φ(i) = red}∪{i ∈ VB : i ∈ S , φ(i) = green} ⊆ V (HA).

VR 1 2 3 4 5 6 7 8 9 10

VG 1 2 3 4 5 6 7 8 9 10

φ(S) 2 5 6 8 10
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The colouring hypergraph � edges

De�nition (Hypergraph edges)

For every a ∈ A and x , y , z ,w ∈ [n] such that a, x , y and a, z ,w
form Schur triples, we add a 4-edge on the vertices x , y ∈ VR and

z ,w ∈ VG .

Observation

- If x , y are coloured red and z ,w are coloured green, we cannot

colour a ∈ A

⇒ Any Schur colouring of A ∪ [n]p is independent in HA
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Containers for colourings

Proposition

For every ε > 0 there is some c = cε such that, if A ⊆ [n] is of size
s = Ω(n1/2), then there is a collection C of subsets of V (HA) for
which:

1. For every P ⊆ [n] and Schur colouring φ of A ∪ P , there is

some C ∈ C such that φ ⊆ C .

2. For every C ∈ C, e(HA[C ]) ≤ εsn2.

3. log |C| ≤ cs−1/3n2/3 log n.

Goal
Show that for every container C ∈ C, the probability that P ∼ [n]p
admits a Schur colouring φ of A ∪ P with φ ⊆ C is very small.
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Anatomy of a container

Partition
Given C ⊆ V (HA), we can partition [n] into four sets:

- missing elements MC : i /∈ C ∩ VR ,C ∩ VG

- red elements RC : i ∈ C ∩ VR , i /∈ C ∩ VG

- green elements GC : i /∈ C ∩ VR , i ∈ C ∩ VG

- two-coloured elements TC : i ∈ C ∩ VR ,C ∩ VG

Observation

- C prescribes the colours of the elements in RC and GC

- Elements from MC cannot be coloured
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Classifying containers

There are three types of containers in the world

Type I

Linearly many elements are missing: |MC | ≥ εn

⇒ very unlikely that all of them will be missing in P ∼ [n]p

Type II

Quadratically many Schur triples in RC or GC

⇒ (Janson) whp such a triple appears in P ∼ [n]p → mc

Type III

None of the above
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Containers of the third type

Ingredients

- Almost all elements in [n] receive at least one colour

- Very few Schur triples in RC , GC

- HA[C ] has very few edges

Recipe

Green's Removal Lemma + Stability + Janson

Outcome
P ∼ [n]p almost surely

contains a wicket

No way to colour x1, x2, x3

x1 + x2 = x3
+ + +
y1 y2 y3
|| || ||
z1 z2 z3
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+ + +
y1 y2 y3
|| || ||
z1 z2 z3
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Open problems

The sparse range

Is p = (ns)−1/3 the correct threshold for sets of size s?

More colours
What is the threshold for making sets r -Schur, for r ≥ 3?

Other systems

Randomly perturbed version of Van der Waerden's theorem?

Thank you for
your attention!



Open problems

The sparse range

Is p = (ns)−1/3 the correct threshold for sets of size s?

More colours
What is the threshold for making sets r -Schur, for r ≥ 3?

Other systems

Randomly perturbed version of Van der Waerden's theorem?

Thank you for
your attention!



Open problems

The sparse range

Is p = (ns)−1/3 the correct threshold for sets of size s?

More colours
What is the threshold for making sets r -Schur, for r ≥ 3?

Other systems

Randomly perturbed version of Van der Waerden's theorem?

Thank you for
your attention!



Open problems

The sparse range

Is p = (ns)−1/3 the correct threshold for sets of size s?

More colours
What is the threshold for making sets r -Schur, for r ≥ 3?

Other systems

Randomly perturbed version of Van der Waerden's theorem?

Thank you for
your attention!


