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Clique-factors: Hajnal—Szemerédi Theorem

❖ Simple, dense graphs G. : the minimum degree of G

❖ Hajnal-Szemerédi ‘70, Corrádi-Hajnal ’63: n-vertex graph G with 
 contains -factor.

❖ Generalized to F-factors by Alon-Yuster ’00, Kühn-Osthus '09

❖ Algorithmic version: Hell-Kirkpatrick ‘83, H.-Treglown ’20

❖ Hypergraph extension still unknown

δ(G)

δ(G) ≥ (1 − 1/r)n Kr
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For k-uniform Hypergraphs H

❖ For , .

❖ Keevash-Mycroft ’11: n-vertex 3-graph H with  contains 
-factor.

❖ The only known tight result on cliques besides those on matchings

❖ A long and involved proof using Hypergraph Regularity Lemmas and 
Hypergraph Blow-up Lemma

❖ A simpler proof found by Han. [2021]

1 ≤ d < k δd(H) := min{deg(S) : |S | = d}

δ2(H) ≥ 3n/4 K3
4
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Clique-factors in random graphs

❖ : n-vertex graph, where each pair of vtxs form an edge with prob=p.

❖ Posa '76, Korshunov ’77: Hamiltonian cycle in  whp.

❖ Johansson-Kahn-Vu ’08: 

❖ whp.  has a -factor.

❖ whp.  has no -factor.

G(n, p)

p ≥ log n
n ⇒ G(n, p)

p = ω(n−2/r(log n)2/(r2−r)) ⇒ G(n, p) Kr

p = o(n−2/r(log n)2/(r2−r)) ⇒ G(n, p) Kr
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Randomly perturbed Model

❖ “Adding random edges to (dense) deterministic (hyper)graphs decreases the 
min-degree/density requirements”

❖ “Adding (a small number of) random edges to (dense) deterministic 
(hyper)graphs decreases the min-degree/density requirements”

❖ Bohman-Frieze-Martin ‘03: Suppose G is a graph with . Add  
uniformly random edges to G. Then the resulting graph whp. is Hamiltonian.

❖ In other words,  is Hamiltonian whp. 

δ(G) ≥ αn Cn

G ∪ G(n, C/n)

5



Clique-factors in randomly perturbed graphs

❖ Johansson-Kahn-Vu ’08: 

❖ whp.  has a -factor.

❖ whp.  has no -factor.

❖ Balogh-Treglown-Wagner ’19: Suppose 

❖  whp.  has a -factor.

❖ there exists  whp.  has no -factor.

p = ω(n−2/r(log n)2/(r2−r)) ⇒ G(n, p) Kr

p = o(n−2/r(log n)2/(r2−r)) ⇒ G(n, p) Kr

𝒢α = {G : δ(G) ≥ α |G |}

p = ω(n−2/r) ⇒ ∀G ∈ 𝒢α G ∪ G(n, p) Kr

p = o(n−2/r) ⇒ G′ ∈ 𝒢α G′ ∪ G(n, p) Kr
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Clique-factors in randomly perturbed graphs

❖ Balogh-Treglown-Wagner is tight for small .

❖ H.-Morris-Treglown, ’21 determined the optimal p for almost all :

❖ For  and ,

❖  whp.  has a -factor.

❖ there exists  whp.  has no -factor.

❖

α ∈ (0,1/r)

α

2 ≤ k ≤ r 1− k
r < α < 1− k − 1

r

p = ω(n−2/k) ⇒ ∀G ∈ 𝒢α G ∪ G(n, p) Kr

p = o(n−2/k) ⇒ G′ ∈ 𝒢α G′ ∪ G(n, p) Kr
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Perturbed k-graphs
❖ Krivelevich-Kwan-Sudakov ’16, for , ,

❖  with , whp.  has a perfect 
matching.

❖ They also raised the analogous question for weaker minimum degree conditions.

❖ Chang-H.-Kohayakawa-Morris-Mota, ’21. Their result holds for all H satisfying 
.

❖ A general result for F-factors was obtained, tight e.g. when  is k-partite, 
, or  is the Fano plane.

k ≥ 3 α > 0

p = ω(n1−k) ⇒ ∀H δk−1(H) ≥ αn H ∪ H(k)(n, p)

δ1(H) ≥ αnk−1

F
F = K3−

4 F
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Perturbed k-graphs: clique-factors?
❖ First Goal: for , ,

❖  with , whp.  has a -factor, 
where  is the threshold for almost -factor in .

❖ A meta problem: for , , ,

❖  with , whp.  has a spanning 
subgraph , where  is the threshold for the existence of an “almost 
spanning copy of ” in .

❖ Further Goal: work out the whole interval for .

k ≥ 3 α > 0

p = ω(pk,r) ⇒ ∀H δk−1(H) ≥ αn H ∪ H(k)(n, p) Kk
r

pk,r Kk
r H(k)(n, p)

k ≥ 3 1 ≤ d < k α > 0

p = ω(p0) ⇒ ∀H δd(H) ≥ αnk−d H ∪ H(k)(n, p)
G p0

G H(k)(n, p)

α ∈ (0,1)
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Perturbed k-graphs: clique-factors

❖ (Chang-H.-Morris, ‘22++) for , , , for 

❖  with , whp.  has a -factor, 
where  is the threshold for almost -factor in .

❖ The case  is fully resolved: 

❖ For , our proof fails for small cliques.

k ≥ 3 α > 0 ∃r0 = r0(k) r ≥ r0

p = ω(pk,r) ⇒ ∀H δk−1(H) ≥ αn H ∪ H(k)(n, p) Kk
r

pk,r = n(1−r)/(r
k) Kk

r H(k)(n, p)

k = 3 r0(3) = 4

k ≥ 4
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Proofs (for ). Lower boundsK3
4

❖ Let . Then a -factor in  needs  
copies from . 

❖ Then the threshold  should be the threshold for an almost -factor 
(  for this case).

H0 := K3
n∖K3

(1−α)n K3
4 H0 ∪ H(3)(n, p) n/4 − αn

H(3)(n, p)

p0 K3
4

p0 = n−3/4
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Proofs (for ). Upper boundsK3
4

❖ Easy: by Janson’s ineq, can find an almost -factor in 

❖ Absorption method: turn an almost -factor to a perfect one

❖ Absorber: 

❖

K3
4 H(3)(n, p)

K3
4
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Proofs (for ). Upper boundsK3
4

❖ Easy: by Janson’s ineq, can find an almost -factor in 

❖ Absorption method: turn an almost -factor to a perfect one

❖ Absorber: 

❖

K3
4 H(3)(n, p)

K3
4
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Proofs (for ). Upper boundsK3
4

❖ Easy: by Janson’s ineq, can find an almost -factor in 

❖ Absorption method: turn an almost -factor to a perfect one

❖ Absorber: 

❖

K3
4 H(3)(n, p)

K3
4
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Proofs (for ). Upper boundsK3
4

❖ Construct an absorber for : {u1, u2, u3, u4}
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Proofs (for ). Construct absorbersK3
4

❖ Need to show, given a sequence of  4-tuples of vertices , find 
vtx-disjoint absorbers for them. (By bipartite-template, Montgomery, Kwan)

❖ If ,  has in expectation  absorbers, Janson’s Ineq allows “greedily 
embedding”: tail probability =  and a union bound on  
possibilities for : in the i-th step, unused vertices.

❖ A dedicated multi-round embedding scheme (found in a coffee shop in 
Valparaíso, Chile) only requires the expectation to be 

εn {Q1, . . . , Qεn}

∀i Qi Cn
exp(−Cn) εn ⋅ 2n

(i, W) W =

nε
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An Embedding Scheme

❖ Given  s. t. ,  has in expectation  absorbers.

❖  of size ,  in total have in expectation  absorbers.

❖ By Janson’s ineq, can greedily find vtx-disjoint absorbers until there are  
’s left. 

❖ Now we are done the 1st round.

{Q1, . . . , Qεn} ∀i Qi n0.1

∀I ⊆ [εn] n0.9 Qi, i ∈ I n

n0.9

Qi
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An Embedding Scheme - continued
❖ Take another copy of 

❖ Given  s. t. ,  has in expectation  absorbers.

❖  of size ,  in total have in expectation  absorbers in a vtx set .

❖ By Janson’s ineq, can greedily find vtx-disjoint absorbers until there are  ’s left. 

❖
In this round, need to consider  possibilities for , and 

❖
 possibilities for the ground set  for embedding.

❖ Now we are done the 2nd round, and it remains to deal with  ’s.

H(3)(n, p)

{Q1, . . . , Qn0.9} ∀i Qi n0.1

∀I ⊆ [εn] n0.8 log n Qi, i ∈ I n0.9 log n W

n0.8 log n Qi

( n0.9

n0.8 log n) ≤ 2n0.8 log2 n I

( n
n0.9) ≤ 2n0.9 log n W′ 

n0.8 log n Qi
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An Embedding Scheme - continued

❖ Repeat the argument for 11 rounds, with the number of leftover ’s being 

❖ , , , …, , , 0, and we are done.

Qi

n0.9 n0.8 log n n0.7 log2 n n0.1 log8 n log9 n
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Thanks for your attention.


