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Notation

𝐺 = (𝑉, 𝐸) − graph, |𝑉| = 𝑛

𝐿 𝐺 ≔ set of cycle lengths in 𝐺

𝐺 is pancyclic if 𝐿 𝐺 = 3,… , 𝑛

G is Hamiltonian if contains a Hamilon cycle, i.e, 𝑛 ∈ 𝐿(𝐺)
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A general meta-question…

𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛

Assume: 𝛼 𝐺 ≤ 𝑡 (⇒ 𝜒 𝐺 ≥
𝑛

𝑡
)

and/or   𝛿 𝐺 ≥ 𝑘

? cycle lengths in 𝐺?

? structure of 𝐿 𝐺 ?

? long cycles in 𝐿 𝐺 ?
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On the bright side of it…

• Trivial: 𝛿 𝐺 ≥ 𝑘 ⇒ ≥ 𝑘 − 1 distinct cycle lengths

• Gao, Huo, Liu, Ma’22 

(conjecture of Liu,Ma’18; 𝑘 = 3 ― Bondy, Vince’98) 

𝛿 𝐺 ≥ 𝑘 ⇒ 𝐿(𝐺) contains an AP of length 𝑘 − 1, 

difference ∈ {1,2}

• GHLM’22 (conjecture of Sudakov, Verstraete’17) : 

𝜒 𝐺 ≥ 𝑘 ⇒ 𝐿(𝐺) contains cycles of 𝑘 − 2 consecutive lengths

…
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𝑘 − 1 endpoints, each closing a cycle 

𝑃 − longest path in 𝐺



Not every day is sunny in Pittsburgh…

(or even in Tel Aviv…)

Ex.: 𝐺 = collection of 𝑡 disjoint cliques of size 
𝑛

𝑡
each

• 𝛼 𝐺 = 𝑡

• 𝛿 𝐺 ≈
𝑛

𝑡

• no cycles longer than 
𝑛

𝑡
; 𝐿 𝐺 <

𝑛

𝑡

⇒ need some fix…
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Little randomness comes to the rescue…

Possible remedy: add few random edges on top of 𝐺

⇒ randomly perturbed graphs 

Bohman, Frieze, Martin’03:

Th. A: 𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, 𝛿 𝐺 ≥ 𝛿𝑛, 𝛿 ∈ 0,1 − constant

+ 𝐶 𝛿 𝑛 random edges =:𝑅

⇒ whp 𝐺 ∪ 𝑅 is Hamiltonian 

(in fact even pancyclic)
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Little randomness comes to the rescue… 

(cont.)

Ex.: 𝐺 = 𝐾𝑛

3
,
2𝑛

3

, sides 𝐴, 𝐵, 𝐴 =
𝑛

3
, 𝐵 =

2𝑛

3

∀𝐺′ ⊇ 𝐺, if 𝐶 is a Hamilton cycle in 𝐺′

⇒ 𝐶 has ≥
𝑛

3
edges inside 𝐵

⇒ 𝐸 𝐺′ − 𝐸 𝐺 ≥
𝑛

3
− deterministically
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Too much independence can hurt you…

Perhaps: large 𝛼 𝐺 requires many random edges?

Th. B (BFM’03): 𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, 𝛿 𝐺 ≥ 𝛿𝑛, 𝛿 = 𝛿(𝑛)

𝛼 𝐺 <
𝛿2𝑛

2

𝑅 ∼ 𝐺 𝑛, 𝑝 , 𝑝 ≫
log(

1

𝛿
)

𝛿3𝑛2

⇒ whp 𝐺 ∪ 𝑅 is Hamiltonian 

? Whether the bound for 𝑝 𝑛 is sharp?

Observe: 𝛿 = 𝑂(𝑛−
1

3) ⇒ require 𝑝 ≫
log 𝑛

𝑛

― higher than the threshold for Ham’ty in 𝐺(𝑛, 𝑝)

⇒ no need in the background graph 𝐺… 
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Our results

Th. 1: 𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, 𝛿 𝐺 ≥ 𝛿𝑛,

Ω 𝑛−
1

3 = 𝛿 = 𝑜 1

𝛼 𝐺 ≤ 𝑐𝛿2𝑛

𝑝 ≥
𝐶 log(

1

𝛿
)

𝛿𝑛2
, 𝑅 ∼ 𝐺 𝑛, 𝑝

⇒ whp 𝐺 ∪ 𝑅 is pancyclic

Tightness: 𝐺 =
1

𝛿
disjoint cliques of size ≈ 𝛿𝑛

𝛿 = Ω 𝑛−
1

3 ; 𝛼 𝐺 =
1

𝛿
≤ 𝑐𝛿2𝑛

Easy to see: need ≥
𝐶 log(

1

𝛿
)

𝛿
random edges to touch every clique whp
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Theorem 1 ― proof idea

A very useful tool:

Lemma (BFKM’04): 𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, 𝛿 𝐺 ≥ 𝑘

Can decompose: 𝑉 = 𝑉1ྣ…ྣ𝑉𝑡 s.t.

• 𝑉𝑖 ≥
𝑘

8
, 𝑖 = 1, … , 𝑡

• 𝐺 𝑉𝑖 is 
𝑘2

16𝑛
− connected

Illustration: BFM for the dense case 𝛿 𝐺 = 𝑘 = Θ 𝑛

Assume: 𝛼 𝐺 <
𝑘2

16𝑛

Decompose into 𝑡 = 𝑂(1) pieces; 𝜅 𝐺 𝑉𝑖 ≥
𝑘2

16𝑛
> 𝛼 𝐺 ≥ 𝛼 𝐺 𝑉𝑖

⇒ 𝐺 𝑉𝑖 is Hamilton-connected (Chvátal-Erdős’72)
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Theorem 1 ― proof idea (cont.)

• use 𝜔 1 random edges from 𝑅

to weave the pieces 𝑉𝑖

into a Hamilton cycle

• use Ham. connectivity of 𝐺[𝑉𝑖]

to connect entry/exit points inside 𝑉𝑖

by a Hamilton path in 𝐺[𝑉𝑖]

Get a Hamilton cycle in 𝐺 ∪ 𝑅 whp
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Theorem 1 ― proof idea (cont.)

General case 𝛿 𝐺 = 𝑜(𝑛):

• same decomposition

• more sophisticated weaving:

HC in the auxiliary graph ― enters pieces 𝑉𝑖 possibly many times 

(pieces of different sizes)

⇒ need a statement:

∃ family of paths connecting given pairs 

in a highly connected graph

and covering all vertices 

(variant of linkage)

― prove such a statement using randomness.   
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Bounding 𝛼(𝐺) only

Th. 2: 𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, 𝜔(1) = 𝛼 𝐺 ≤ 𝑐𝑛

𝜖 > 0

𝑝 ≥
𝐶𝛼 𝐺

𝑛2
, 𝑅 ∼ 𝐺 𝑛, 𝑝

⇒ whp 𝐺 ∪ 𝑅 contains a cycle 𝐶, 𝐶 ≥ 1 − 𝜖 𝑛

(nearly Hamilton)

Tightness: 𝐺 = 𝑡 disjoint cliques of size 
𝑛

𝑡

∀ 𝑅, 𝐸 𝑅 < 𝑐𝑡

circumference 𝐺 ∪ 𝑅 ≤ 𝑐𝑛
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Theorem 2 ― proof idea

• 𝛼 𝐺 ≤ 𝑡 ⇒ most vertices 𝑣 ∈ 𝑉, 𝑑 𝑣 = Ω
𝑛

𝑡

⇒ can repeatedly find (in 𝐺) disjoint paths 𝑃1, … , 𝑃𝑠, 𝑃𝑖 = Θ
𝑛

𝑡

𝑖=1ڂ
𝑠 𝑃𝑖 covers ≥ 1 −

𝜖

2
𝑛 vertices

• use random edges from 𝑅 to weave (most of) these paths:

⇒ whp get a path/cycle of length ≥ 1 − 𝜖 𝑛. 
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Getting tough…

Def.: 𝐺 = (𝑉, 𝐸) is 𝑡 −tough if  ∀𝑆 ⊂ 𝑉

# conn. comps of 𝐺 − 𝑆 ≤ max 1,
𝑆

𝑡

Chvátal’73:

• observed: 𝐺 − Hamiltonian ⇒ 𝐺 is 1-tough

• conjectured: 

Toughness conjecture: ∃ 𝑡 ≥ 1 constant s.t.

every 𝑡-tough graph is Hamiltonian

― still widely open. 
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Our result

- Assuming toughness, one of several regimes: 

Th. 3: Assume toughness conjecture with constant 𝑡0

𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, 

𝛿 𝐺 = 𝑘 = 𝑂 𝑛

𝛼 𝐺 ≤ 𝑐 𝑡0 𝑘

𝑝 =
𝐶 log 𝑛

𝑛𝑘
, 𝑅 ∼ 𝐺 𝑛, 𝑝

⇒ whp 𝐺 ∪ 𝑅 is pancyclic
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Our result (cont.)

Tightness: 

𝛿(𝐺) =
𝑘

2

𝛼 𝐺 = 𝑘

Need: ≥
𝑘

2
edges of 𝑅 touching 𝐼 to get a 1-tough graph

⇒ require: 𝑅 = Ω 𝑛
16

𝐵

𝐴

𝐼

𝐺 𝐵 − clique

𝐴 ⊂ 𝐵, 𝐴 =
𝑘

2

𝐼 − indep. set, 𝐼 = 𝑘 − 1
𝐼 fully connected to 𝐴

𝐺 =

Th. 3: Assume toughness 

conjecture with constant 𝑡0
𝐺 = (𝑉, 𝐸), |𝑉| = 𝑛, 

𝛿 𝐺 = 𝑘 = 𝑂 𝑛

𝛼 𝐺 ≤ 𝑐 𝑡0 𝑘

𝑝 =
𝐶 log 𝑛

𝑛𝑘
, 𝑅 ∼ 𝐺 𝑛, 𝑝

⇒ whp 𝐺 ∪ 𝑅 is pancyclic




