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On Randomly Weighted, Randomly Perturbed Dense
Graphs

We let G0 be a dense graph or digraph and we add random
edges R to create a graph or digraph G = G0 + R.
Introduced by Bohman,F,Martin in 2003.
Many recent papers.

Anastos, F in 2019 randomly colored the edges and considered
(i) rainbow Hamilton cycles and (ii) rainbow connectivity.

Aigner-Horev and Hefetz 2020 gave improvements to (i) and
Balogh,Finlay and Palmer 2021 gave improvements to (ii).
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On Randomly Weighted, Randomly Perturbed Dense
Graphs

In this talk we also give the edges of G independent random
weights.
Randomly adding randomly weighted, randomly colored edges,
not yet considered.

We consider the case where G0 is αn-regular.
1 Minimum Spanning Trees.
2 Shortest Paths.
3 Perfect matchings in bipartite graphs.
4 Asymmetric TSP (with Peleg Michaeli).
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Minimum Spanning Trees

Let G be an asymptotically r -regular and suppose each edge
has an independent uniform [0,1] random weight.

Let Ln be the (random) minimum weight of a spanning tree.

Theorem (Beveridge,F,McDiarmid)

Suppose that r →∞. Given a moderate connectivity condition
MCC, Ln ∼ n

r ζ(3).

1 G = Kn : Ln ∼ ζ(3).
2 G = Kn,n : Ln ∼ 2ζ(3).
3 G = Qn : Ln ∼ 2n

n ζ(3).
Adding o(n2) randomly weighted random edges to an
asymptotically αn-regular graph satisfies MCC w.h.p.
So, w.h.p. Ln ∼ α−1ζ(3).
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Shortest Paths

The edges of G0 + R are given independent EXP(1) random
lengths – Pr(EXP(1) ≥ λ) = e−λ.
Let di,j denote the length of a shortest path from i to j .

Theorem
1 d1,2 ∼ log n

αn w.h.p.
2 maxj d1,j ∼ 2 log n

αn w.h.p.
3 maxi,j di,j ∼ 3 log n

αn w.h.p.

Janson 1999 proved this when α = 1,R = ∅.

We adapt his argument.
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Shortest Paths
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Shortest Paths
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Perfect Matchings

Perfect matchings in Kn,n: Mn is the minimum weight matching.
1 Walkup 1979: E(w(Mn)) ≤ 3; Uniform [0,1] edge

weights.

2 Karp 1987: E(w(Mn)) ≤ 2; Uniform [0,1] edge weights.
3 Aldous 1992 limn→∞ E(w(Mn)) exists; EXP(1) edge

weights.
4 Aldous 2001 limn→∞ E(w(Mn)) = ζ(2) = π2

6 ; EXP(1)
edge weights.

5 Parisi 1998: Conjecture E(w(Mn)) =
∑n

i=1
1
i2 .

6 Linusson,Wastlund 2004 and Nair,Prabhakar,Sharma 2005
verified the Parisi conjecture.
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Perfect Matchings
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Perfect Matchings – Wästlund

X = w(Mr ) and Yi is the minimum weight of a matching from
Ar \ {ai} into B.

Add a new vertex b∗ and edges of length EXP(λ) from Ar to
B∗ = B ∪ {b∗}.

P(r) = Pr(b∗ ∈ M∗r ) = E

(
r∑

i=1

Pr(w(ai ,b∗) < X − Yi)

)

= E

(
r∑

i=1

(1− e−λ(X−Yi ))

)

= λ

r∑
i=1

E(X − Yi) + O(λ2)

= λr(E(w(Mr ))− E(w(Mr−1)) + O(λ2)).
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Perfect Matchings – Wästlund

P(r) = λr(E(w(Mr ))− E(w(Mr−1)) + O(λ2))

= Pr(b∗ ∈ M∗r ) = 1−
r−1∏
i=0

Pr(b∗ ∈ M∗r−i | b∗ /∈ M∗r−i−1)

In Kn,n we have

P(r) = 1−
r−1∏
i=0

n − i
n − i + λ

= λ

r−1∑
i=0

1
n − i

+ O(λ2).

In G0 + R we have

P(r) = λ
r−1∑
i=0

1
δi

+ O(λ2)

where δr is the degree of a∗ in Br .
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Perfect Matchings

We should have δr ∼ α(n − r + 1) implying that

E(w(Mn)) ∼
π2

6α
.

We can only prove this when G0 is pseudo-random in the
sense of Thomason 1989.

The proof is a bit technical.
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Asymmetric TSP

Let C(i , j) be independent EXP(1) for 1 ≤ i 6= j ≤ n.

We let the C(i , j) be the costs for an instance of the Asymmetric
Travelling Salesperson Problem (ATSP). I.e. the minimum cost
of a Hamilton cycle in the complete digraph ~Kn.

The Assignment Problem (AP) is the problem of finding the
minimum cost perfect matching in Kn,n with costs C(i , j).

AP is equivalent to finding the minimum cost of a collection of
vertex disjoint cycles in Kn,n that cover all vertices.

It follows that in terms of optimal values val(AP) ≤ val(ATSP).
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Asymmetric TSP

Karp 1979 descibed a patching algorithm that in O(n3) time
w.h.p. produces a Hamilton cycle Hkarp of weight
(1 + o(1))val(AP) ≤ (1 + o(1))val(ATSP).

The algorithm solves AP and then patches the associated
cycles together as cheaply as possible.
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Asymmetric TSP

We replace ~Kn with D = D0 + R where D0 has minimum in- and
out-degree at least αn.

Theorem

Suppose that |R| = n2−ε and that each edge of D is given an
independent EXP(1) cost. Then w.h.p.
val(ATSP) = (1 + o(1))val(AP) and Karp’s patching algorithm
finds a tour of the claimed cost in polynomial time.

The proof rests on the following lemma:

Lemma

(a) W.h.p., the solution to AP contains only edges of cost
C(i , j) ≤ γn = n−(1−2ε).
(b) W.h.p., after solving AP, the number νC of cycles is at most
r0 log n where r0 = n1−3ε.
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Asymmetric TSP

Given the lemma, the proof is simple. Let C = C1,C2, . . . ,C` be
a cycle cover and let ki = |Ci | where k1 ≤ k2 ≤ · · · ≤ k`,
2 ≤ ` ≤ r0. Different edges in Ci give rise to disjoint patching
pairs. We only consider the random edges R when looking for a
patch. The number of possible patching pairs νC satisfies

νC ≥
∑
i 6=j

kikj =
1
2

(
n2 −

∑̀
i=1

k2
i

)

≥ 1
2

(
n2 − ((n − `+ 1)2 + `− 1)

)
≥ `n

2
.

Each of these νC pairs uses a disjoint set of edges.
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Asymmetric TSP

We define the sets

R` =

{
e ∈ R : C(e) ≤ γn +

(
log n

`n1−5ε/2

)1/2
}
, 1 ≤ ` ≤ r0.

Let E` be the event that |C| = ` and that there is no patch using
only edges in R`. If E` does not occur then we reduce the
number of cycles by at least one. We have

Pr(E`) ≤ exp

{
−n4−2ε log n

18n4−5ε/2

}
= o(n−1).

It follows that Pr(∃i : Ei) = o(1) and then the union bound
implies that w.h.p. the patches involved in these cases add at
most the following to the cost of the assignment:

r0 log n∑
`=1

(
γn +

(
log n

`n1−5ε/2

)1/2
)
≤ r0γn log n+

(
2r0 log

2 n
n1−5ε/2

)1/2

= o(1).
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THANK YOU
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